GCSE Mathematics - Higher

One question per topic across the specification Geometry

Name:

Class:

Teacher:

GEOMETRY

Triangles and Quadrilaterals

The diagram shows a kite, $A B C D$.
$A F E$ and $C E F$ are equilateral triangles.

Write down a mathematical name for quadrilateral AFCE.

The ratio of angle $D A E$: angle $E A F=1: 4$.
Work out angle x.
Write on the diagram the values of any other angles you use in your working.

Area of 2D Shapes

The diagram shows two rectangles, A and B.

Rectangle A has a width of 25 cm and a height of 12 cm .
The width of rectangle B is three times the height of rectangle B.
The area of rectangle A is equal to the area of rectangle B.
Find the perimeter of rectangle B.

Angles in Parallel Lines

The diagram shows triangle $A B C$.
$C D$ is parallel to $A B$.
A, C and E lie in a straight line.
Angles of size a°, b° and c° are shown.

Not to scale

Insert a°, b° or c° to make this statement true. Give a reason for your answer.

Angle $D C E=$ \qquad because \qquad

Angles in Polygons

a) An interior angle of a regular polygon is eleven times its exterior angle.

Work out the number of sides of the polygon.
b) Imran joins two tiles together as shown below.

One tile is a regular hexagon and the other tile is a regular pentagon.

Not to scale

Imran thinks that another tile in the shape of a regular polygon will fit exactly into angle a.
Is Imran correct?
Show your reasoning.

Constructions and Loci
a) The diagram shows triangle $A B C$.

Construct the bisector of angle BAC.
b) Construct the perpendicular from the point P to the line $A B$.

Show all of your construction lines.
P.

c) Jez finds a gold coin in a field.

This is a scale drawing of the field.

Scale: $\mathbf{1 c m}$ represents $\mathbf{5 0 m}$

Jez says that the coin was an equal distance from each hedge and an equal distance from each tree.
Show by construction that Jez is wrong.

Area and Circumference of Circles
a) Three identical small circles are drawn inside one large circle, as shown in the diagram. The centres of the small circles lie on the diameter of the large circle.

Find the fraction of the large circle that is shaded.
b) The shape below is formed from two semicircles and a straight line.

The radius of the large semicircle is 8 cm .
The radius of the small semicircle is $\dagger \mathrm{cm}$.

Find an expression, in terms of t, for the exact perimeter of the shaded shape.

Sectors and Arc Lengths
a) $O P Q$ is a sector of a circle, centre O and radius 9 cm .

Find the perimeter of the sector.
Give your answer in terms of π.
b) The design below is made from two sectors of circles, centre 0 .

Calculate the area of the shaded part.
Give your answer correct to 3 significant figures.

Surface Area

A cuboid has length $\times \mathrm{cm}$.
The width of the cuboid is 4 cm less than its length.
The height of the cuboid is half of its length.
Write an expression for the total surface area of the cuboid.
a) A circular table top has radius 70 cm .

The volume of the table top is $17,150 \pi \mathrm{~cm}^{3}$.
Calculate the thickness of the table top.
a) A cuboid has length $\times \mathrm{cm}$.

The width of the cuboid is 4 cm less than its length.
The height of the cuboid is half of its length.
Work out the volume of the cuboid.
\qquad

Cones and Spheres (1)
a) Calculate the total surface area of a cone with radius 5 cm and slant height 12 cm .
b) A solid metal sphere has radius 9.8 cm .

The metal has a density of $5.023 \mathrm{~g} / \mathrm{cm}^{3}$.
Lynne estimates the mass of this sphere to be 20 kg .
Show that this is a reasonable estimate for the mass of the sphere.

Cones and Spheres (2)
c) The diagram shows a cylinder and a cone.

The cylinder has radius 2 cm and height 9 cm .
The cone has radius rcm and height hcm .

The ratio $r: h$ is $1: 4$.
The volume of the cone is equal to the volume of the cylinder.

Work out the value of r.
d) An octahedron is formed from two identical square based pyramids.

The square bases are stuck together as shown.

The volume of the octahedron is $60 \mathrm{~cm}^{3}$.
The length of the side of each pyramid's square base is 5 cm .
Work out the height hcm of the octahedron.

Transformations
a) Triangle A is drawn on the coordinate grid.

Zara and Sam each transform triangle A onto triangle B.
Zara uses a rotation of 90° clockwise about the origin followed by a reflection in $x=3$. Sam uses a reflection in $y=-x$ followed by a transformation T.
Describe fully transformation T.
b) A triangle T is drawn on a coordinate grid.

Describe fully the single transformation that is equivalent to a reflection in the line $y=x$, followed by a rotation of 90° anti-clockwise about $(0,0)$.

Bearings

The diagram shows the positions of two towns, Amton and Bisham.

The bearing of Bisham from Amton is b°.
The bearing of Amton from Bisham is $6 b^{\circ}$.

Calculate the 3-figure bearing of Amton from Bisham.

Similarity
In the diagram below, $A E$ and $B D$ are straight lines.

Show that triangles $A B C$ and EDC are similar.

Congruent Triangles
$A B C D$ is a parallelogram.

Prove that triangle $A B D$ is congruent to triangle $C D B$.

Circle Theorems (1)
a) A, B, C and D are points on the circumference of a circle, centre O. $A C$ is a diameter of the circle.
Angle $A B D=58^{\circ}$.
Angle $C D B=22^{\circ}$.

Not to scale
Find the size of angle ACD, giving reasons for your answers.

Find the size of angle $A C B$, giving reasons for your answers.

Circle Theorems (2)
b) A, B and C lie on a circle, centre O.

In quadrilateral $A B C O$, angle $A O C=5 x^{\circ}$ and angle $A B C=(2 x+45)^{\circ}$.

Not to scale

Find the value of x.
c) A, B, C and D are points on the circumference of a circle, centre O.

Not to scale

Angle $B A D=52^{\circ}$.
Work out the size of angles x and y. Give reasons for your answers.

Vectors

a) Work out

$$
\binom{3}{4}-2\binom{1}{-3}
$$

b) Two vectors, a and b, are shown on the grid below.

Show that the vector $a+2 b$ has a length of 7 units.
You may use the grid below.

c) $O A B C$ is a square.
$\overrightarrow{\mathrm{OA}}=\mathbf{a}$ and $\overrightarrow{\mathrm{OC}}=\boldsymbol{b}$.
M is the midpoint of $A B$.
L is a point on MC such that $L C=2 M L$.

Not to scale

Use vectors to prove that the point L lies on the line $O B$.

Geometric Proof
a) The diagram shows points A, B and C on the circumference of a circle. Line DAE is a tangent to the circle.
$D E$ is parallel to $B C$.
Not to scale

Prove that triangle $A B C$ is an isosceles triangle.
Give the reason for each step in your proof.
a) A and B are points on the circumference of a circle, centre O.
$C A$ and $C B$ are tangents to the circle.

Prove that triangle $O A C$ is congruent to triangle $O B C$.

