Find the exact value of $\cos (a+b)$, if sina $=\frac{3}{5}$ and $\cos b=\frac{5}{13}$

Expand given addition formula	$\text { cosacosb- } \sin a \sin b$
Draw Right Angled Triangles from given fractions	
Using Pythagoras, calculate missing sides of triangles	$\begin{aligned} & \sqrt{5^{2}-3^{2}} \\ = & \sqrt{13^{2}-5^{2}} \\ 16=4 & = \\ 144 & =12 \end{aligned}$
State Values of trig. Ratios	$\begin{array}{ll} \sin a=\frac{3}{5} & \sin b=\frac{12}{13} \\ \cos a=\frac{4}{5} & \cos b=\frac{5}{13} \end{array}$
Substitute into expanded formula and simplify	$\begin{aligned} & \frac{4}{5} \times \frac{5}{13}-\frac{3}{5} \times \frac{12}{13} \\ = & \frac{20}{65}-\frac{36}{65} \\ = & -\frac{16}{35} \end{aligned}$

Expand given addition formula	$\sin a \cos b+\cos a \sin b$
Draw Right Angled Triangles from given fractions	
Using Pythagoras, calculate missing sides of triangles	$\begin{aligned} & \sqrt{6^{2}-5^{2}} \\ = & \sqrt{11} \end{aligned}$ $\sqrt{17^{2}-15^{2}}$ $=\sqrt{64}=8$
State Values of trig. Ratios	$\begin{array}{ll} \sin a=\frac{5}{6} & \sin b= \\ \cos a= & \cos b=\frac{15}{17} \end{array}$
Substitute into expanded formula and simplify	$\frac{5}{6} \times \frac{15}{17}+$

Find the exact value of $\sin (a-b)$, if $\sin a=\frac{1}{\sqrt{5}}$ and $\cos b=\frac{1}{3}$

| Expand given addition formula | Sina cosb-cos a Sin |
| :--- | :--- | :--- |
| Draw Right Angled Triangles from
 given fractions | |
| Using Pythagoras, calculate
 missing sides of triangles | $\sqrt{\sqrt{9}^{2}}=1^{2}$ |

Find the exact value of $\cos (a-b)$, if $\sin a=\frac{2}{\sqrt{13}}$ and $\cos b=\frac{4}{5}$

Expand given addition formula	
Draw Right Angled Triangles from given fractions	
Using Pythagoras, calculate missing sides of triangles	
State Values of trig. Ratios	
Substitute into expanded formula	
and simplify	

