a)

Here is a regular hexagon and a regular pentagon.


Work out the size of the marked angle.
You must show all your working.

Number of sides? 6
Number of triangles? $6-2=4$

$$
4 \times 180^{\circ}=720^{\circ}
$$

What are the sizes of the
known angles?
Each angle $=720^{\circ} \div 6=120^{\circ}$
Number of sides? 5
Number of triangles? 5-2=3

$$
3 \times 180^{\circ}=540^{\circ}
$$

Each angle $=540^{\circ} \div 5=108^{\circ}$
What is the size
of the unknown

$$
360^{\circ}-\left(120^{\circ}+108^{\circ}\right)=132^{\circ}
$$

b)

Here is a regular octagon and a regular hexagon.


Work out the size of the marked angle.
You must show all your working.

Number of sides? 8
Number of triangles? $8-2=6$

$$
6 \times 180^{\circ}=1080^{\circ}
$$

Each angle $=1080^{\circ} \div 8=135^{\circ}$
Number of sides? 6
Number of triangles? 6-2 $=4$

$$
4 \times 180^{\circ}=720^{\circ}
$$

Each angle $=720^{\circ} \div 6=120^{\circ}$
What is the size
of the unknown
angle?

Here is a regular decagon and a regular nonagon.


Work out the size of the marked angle.
You must show all your working.

|  | Number of sides? 10 <br> Number of triangles? $10-2=8$ |
| :--- | :---: |
| What are the <br> sizes of the <br> known angles? | Each angle $=1440^{\circ} \div 10=144^{\circ}$ |

d)

Here is a regular octagon and a regular dodecagon.


Work out the size of the marked angle. You must show all your working.

