a)

Here is a regular hexagon and a regular pentagon.

Work out the size of the marked angle. You must show all your working.

What are the sizes of the known angles?	Number of sides? 6 Number of triangles? $6 - 2 = 4$ $4 \times 180^{\circ} = 720^{\circ}$ Each angle = $720^{\circ} \div 6 = 120^{\circ}$
	Number of sides? 5 Number of triangles? $5 - 2 = 3$
	$3 \times 180^{\circ} = 540^{\circ}$
	Each angle = $540^{\circ} \div 5 = 108^{\circ}$
What is the size of the unknown angle?	$360^{\circ} - (120^{\circ} + 108^{\circ}) = 132^{\circ}$

b)

Here is a regular octagon and a regular hexagon.

Work out the size of the marked angle. You must show all your working.

	Number of sides? 8 Number of triangles? $8 - 2 = 6$
	$6 \times 180^{\circ} = 1080^{\circ}$
What are the	Each angle = $1080^{\circ} \div 8 = 135^{\circ}$
sizes of the known angles?	Number of sides? 6 Number of triangles? $6 - 2 = 4$
	$4 \times 180^{\circ} = 720^{\circ}$
	Each angle = $720^{\circ} \div 6 = 120^{\circ}$
What is the size of the unknown angle?	

BACKWARD FADED MATHS

Here is a regular decagon and a regular nonagon.

Work out the size of the marked angle. You must show all your working.

Number of sides? 10
Number of triangles?
$$10 - 2 = 8$$

 $8 \times 180^{\circ} = 1440^{\circ}$

What are the sizes of the known angles?

Each angle = $1440^{\circ} \div 10 = 144^{\circ}$

d)

Here is a regular octagon and a regular dodecagon.

Work out the size of the marked angle. You must show all your working.

BACKWARD FADED MATHS