$A B, B C$ and $C D$ are sides of a regular 12-sided polygon.
CDMN is a square.
Prove that the points A, B and N lie on a straight line.

What would make
ABN a straight line?

What is the size of angle CBA?

What is the size of angle NBC?

What is the sum of CBA and NBC?

$$
\begin{gathered}
\frac{360}{12}=30^{\circ} \text { (exterior angle) } \\
\mathrm{CBA}=180-30=150^{\circ} \\
\mathrm{BCD}=\mathrm{CBA}=150^{\circ} \text { (regular polygon) } \\
\text { NCD }=90^{\circ} \text { (square) }
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{BCN}=360-(150+90)=120^{\circ} \\
\mathrm{NBC}=\frac{180-120}{2}=30^{\circ}
\end{gathered}
$$

$$
150+30=180
$$

$A B N$ would be a straight line if the angles CBA and NBC sum to 180 degrees.

Because the angles CBA and NBC have a sum of $180^{\circ}, \mathrm{ABN}$ is a straight line.
b)
$A B, B C$ and $C D$ are sides of a regular 10-sided polygon.
CDEFG is a regular pentagon.
Prove that the points A, B and G lie on a straight line.

What would make ABG a straight
line?

ABG would be a straight line if the angles CBA and GBC sum to 180 degrees.

What is the size of angle CBA?

$$
\begin{aligned}
& \frac{360}{10}=36^{\circ}(\text { exterior angle }) \\
& C B A=180-36=144^{\circ}
\end{aligned}
$$

$B C D=C B A=144^{\circ}$ (regular polygon)

$$
\mathrm{NCD}=180-\frac{360}{5}=108^{\circ}(\text { regular pentagon })
$$

What is the size of angle GBC?

$$
\begin{gathered}
\mathrm{GCB}=360-(144+108)=108^{\circ} \\
\mathrm{GBC}=\frac{180-108}{2}=36^{\circ}
\end{gathered}
$$

What is the sum of CBA and GBC?

