a)

The diagram shows three circles, each of radius 4 cm .
The centres of the circles are A, B and C such that $A B C$ is a straight line and $A B=B C=4 \mathrm{~cm}$.

Work out the total area of the two shaded regions.
Give your answer in terms of π.
What is the area of each circle?

How much of the circle, centre B, is unshaded?

A regular hexagon, formed of six equilateral triangles, is inscribed in a circle.

Area of the sector $=$

$$
\frac{1}{3} \times 16 \pi=\frac{16 \pi}{3}
$$

$$
\begin{gathered}
\text { Area of the triangle }= \\
\frac{1}{2} \times 4 \times 4 \times \sin 120= \\
8 \times \frac{\sqrt{3}}{2}=4 \sqrt{3}
\end{gathered}
$$

Area of the segment $=$ Area of sector - area of triangle

$$
=\frac{16 \pi}{3}-4 \sqrt{3}
$$

Red area $=$

$$
4 \times\left(\frac{16 \pi}{3}-4 \sqrt{3}\right)
$$

How much of the circle, centre B is shaded?

Area of the circle - red area

$$
\begin{gathered}
=16 \pi-4\left(\frac{16 \pi}{3}-4 \sqrt{3}\right) \\
=16 \pi-\frac{64 \pi}{3}+16 \sqrt{3} \\
=16 \sqrt{3}-\frac{16 \pi}{3}
\end{gathered}
$$

BACKWARD FADED MATHS

b)

The diagram shows three circles, each of radius 6 cm .
The centres of the circles are A, B and C such that $A B C$ is a straight line and $A B=B C=6 \mathrm{~cm}$.

Work out the area of the shaded region.
Give your answer in terms of π.
What is the area of each circle?

How much of the circle, centre B, is unshaded?

A regular hexagon, formed of six equilateral triangles, is inscribed in a circle.

$$
\begin{aligned}
& \text { Area of the sector }= \\
& \frac{1}{3} \times 36 \pi=12 \pi
\end{aligned}
$$

Area of the triangle $=$ $\frac{1}{2} \times 6 \times 6 \times \sin 120=$ $18 \times \frac{\sqrt{3}}{2}=9 \sqrt{3}$

Area of the segment $=$ Area of sector - area of triangle

$$
=
$$

How much of the circle, centre B is shaded?
c)

The diagram shows three circles, each of radius 5 cm .
The centres of the circles are A, B and C such that $A B C$ is a straight line and $A B=B C=5 \mathrm{~cm}$.

Work out the total area of the two shaded regions.
Give your answer in terms of π.
What is the area of each circle?

How much of the circle, centre B, is shaded?

A regular hexagon, formed of six equilateral triangles, is inscribed in a circle.

Area of the sector $=$

Area of the triangle $=$
d)

The diagram shows three circles, each of radius 5 cm .
The centres of the circles are A, B and C such that $A B C$ is a straight line and $A B=B C=5 \mathrm{~cm}$.

Work out the area of the shaded region.
Give your answer in terms of π.

