a) In the diagram, $\overline{DC} = \frac{1}{2} \overrightarrow{AB}$. N is on the line AC such that $AN : NC$ is 2 : 1. Prove that BND is a straight line. B A D C		 b) In the diagram, ABCD is a parallelogram, and P is the midpoint of the line AC. Prove that BPD is a straight line. 	
What makes BND a straight line?	The vectors \overrightarrow{BN} and \overrightarrow{ND} are parallel to one another, and share a common point, N.	What makes BPD a straight line?	The vectors \overrightarrow{BP} and \overrightarrow{PD} are parallel to one another, and share a common point, P.
How can we write \overrightarrow{BN} in terms of a and b?	$\overrightarrow{BN} = \overrightarrow{BA} + \overrightarrow{AN}$ $\overrightarrow{BN} = -a + \frac{2}{3}\overrightarrow{AC} = -a + \frac{2}{3}b = \frac{2}{3}b - a$	How can we write \overrightarrow{BP} in terms of a and b?	$\overrightarrow{BP} = \overrightarrow{BA} + \overrightarrow{AP}$ $\overrightarrow{BP} = -4p + \frac{1}{2}\overrightarrow{AC} = -4p + \frac{1}{2}(4p + 4r)$ $= -4p + 2n + 2r = 2r - 2n$
How can we write \overrightarrow{ND} in terms of a and b?	$\overrightarrow{ND} = \overrightarrow{NC} + \overrightarrow{CD}$ $\overrightarrow{ND} = \frac{1}{3}\overrightarrow{AC} + \overrightarrow{CD} = \frac{1}{3}b - \frac{1}{2}a$	How can we write \overrightarrow{PD} in terms of a	$\overrightarrow{PD} = \overrightarrow{PC} + \overrightarrow{CD}$ $\overrightarrow{PD} = \frac{1}{\overrightarrow{AC}} + (-An) = \frac{1}{\overrightarrow{AC}} (An + An) - An$
What can we say about the vectors \overrightarrow{BN} and \overrightarrow{ND} ?	$\overrightarrow{BN} = \frac{2}{3}b - a \qquad \overrightarrow{ND} = \frac{1}{3}b - \frac{1}{2}a$ $\overrightarrow{BN} = 2\overrightarrow{ND} \text{ so } \overrightarrow{BN} \text{ and } \overrightarrow{ND} \text{ are parallel}$	$\frac{PD}{A}$ and $\frac{D}{P}$ What can we say about the vectors \overline{BP} and \overline{PD} ?	$PD = \frac{1}{2}AC + (-4p) = \frac{1}{2}(4p + 4r) - 4p$ $= 2p + 2r - 4p = 2r - 2p$
What can we say about the line BND?	Because \overrightarrow{BN} and \overrightarrow{ND} are parallel, and share a common point, N, we can say that BND is a		
	straight line.	What can we say about the line BPD?	
BACKWARD FADED MATHS			

Prove that BPE is a straight line.

BACKWARD FADED MATHS