a)

In the diagram, $\overrightarrow{D C}=\frac{1}{2} \overrightarrow{A B}$.
N is on the line AC such that $A N: N C$
is $2: 1$.
Prove that BND is a straight line.

What makes BND a straight line?

How can we write $\overrightarrow{B N}$ in terms of a and b ?

How can we write $\overrightarrow{N D}$ in terms of a and b ?

What can we say about the vectors $\overrightarrow{B N}$ and $\overrightarrow{N D}$?

What can we say about the line BND?

The vectors $\overrightarrow{B N}$ and $\overrightarrow{N D}$ are parallel to one another, and share a common point, N .

$$
\begin{gathered}
\overrightarrow{B N}=\overrightarrow{B A}+\overrightarrow{A N} \\
\overrightarrow{B N}=-a+\frac{2}{3} \overrightarrow{A C}=-a+\frac{2}{3} b=\frac{2}{3} b-a \\
\overrightarrow{N D}=\overrightarrow{N C}+\overrightarrow{C D} \\
\overrightarrow{N D}=\frac{1}{3} \overrightarrow{A C}+\overrightarrow{C D}=\frac{1}{3} b-\frac{1}{2} a
\end{gathered}
$$

$$
\overrightarrow{B N}=\frac{2}{3} b-a \quad \overrightarrow{N D}=\frac{1}{3} b-\frac{1}{2} a
$$

$$
\overrightarrow{B N}=2 \overrightarrow{N D} \text {, so } \overrightarrow{B N} \text { and } \overrightarrow{N D} \text { are parallel. }
$$

Because $\overrightarrow{B N}$ and $\overrightarrow{N D}$ are parallel, and share a common point, N , we can say that BND is a straight line.
b)

In the diagram, ABCD is a parallelogram, and P is the midpoint of the line AC.

Prove that BPD is a straight line.

What makes BPD a straight line?

How can we write $\overrightarrow{B P}$ in terms of a and b ?

The vectors $\overrightarrow{B P}$ and $\overrightarrow{P D}$ are parallel to one another, and share a common point, P.

$$
\begin{gathered}
\overrightarrow{B P}=\overrightarrow{B A}+\overrightarrow{A P} \\
\overrightarrow{B P}=-4 p+\frac{1}{2} \overrightarrow{A C}=-4 p+\frac{1}{2}(4 p+4 r) \\
=-4 p+2 p+2 r=2 r-2 p
\end{gathered}
$$

$$
\overrightarrow{P D}=\overrightarrow{P C}+\overrightarrow{C D}
$$

How can we write $\overrightarrow{P D}$ in terms of a and b ?

$$
\begin{gathered}
\overrightarrow{P D}=\frac{1}{2} \overrightarrow{A C}+(-4 p)=\frac{1}{2}(4 p+4 r)-4 p \\
=2 p+2 r-4 p=2 r-2 p
\end{gathered}
$$

What can we say about the vectors $\overrightarrow{B P}$ and $\overrightarrow{P D}$?

What can we say about the line BPD?

