By considering matrices for transformations, describe the single transformation that is equivalent to a 90° anti-clockwise rotation about the origin followed by a reflection in the x-axis.

What is the matrix for a 90° anti-clockwise rotation about the origin?	$\stackrel{ }{ }$	$\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right]$
What is the matrix for a reflection in the x-axis?		$\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]$
How can we show the first transformation following the first?	-	$\begin{array}{r} \times \quad\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] \\ =\left[\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right] \end{array}$
What transformation does this matrix represent?		A reflection in the line $y=-x$.

b)

By considering matrices for transformations, describe the single transformation that is equivalent to a 90° clockwise rotation about the origin followed by a reflection in the line $y=x$.

What is the matrix for a 90° clockwise rotation about the origin?

What is the matrix for a reflection in the

$$
\text { line } y=x ?
$$

How can we show the first transformation following the first?

What
transformation does this matrix
represent?

By considering matrices for transformations, describe the single transformation that is equivalent to a 180° rotation about the origin followed by a reflection in the line $y=-x$.
d)

By considering matrices for transformations, describe the single transformation that is equivalent to a 90° anti-clockwise rotation about the origin followed by a reflection in the line $y=x$.

