a)

The diagram shows a parallelogram ABCD.

Prove that the triangles ABD and BCD are congruent.


SSS

What condition of congruency can we use?
(Side, side, side - If the three sides of one triangle are equal to the three sides of another triangle, the two triangles are congruent)

What can we say about the two triangles?

What does this mean?
$\left.\begin{array}{|c|c|}\hline \mathrm{S} & \begin{array}{c}\mathrm{AB}=\mathrm{CD} \text {, because the opposite } \\ \text { sides of a parallelogram are equal }\end{array} \\ \hline \mathrm{S} & \begin{array}{c}\mathrm{BC}=\mathrm{AD} \text {, because the opposite } \\ \text { sides of a parallelogram are equal }\end{array} \\ \hline \mathrm{S} & \mathrm{AC} \text { is a shared side of both } \\ \text { triangles }\end{array}\right]$

Because the three sides of triangle ABC are equal to the three sides of another triangle, we can say that triangles $A B C$ and $A C D$ are congruent.
b)

The diagram shows a kite ABCD.

Prove that the triangles ABD and BCD are congruent.


SAS
What condition of (Side, angle, side - If any two sides and the angle congruency can we use? between them of one triangle are equal to two sides and the angle between them of another triangle, the two triangles are congruent)

|  | S | $\mathrm{AB}=\mathrm{BC}$, because these are equal <br> sides of the kite |
| :---: | :---: | :---: |
| What can we say <br> about the two <br> triangles? | A | $\mathrm{DAB}=\mathrm{DCB}$, because a kite has a <br> line of symmetry (BD) |
|  | S | $\mathrm{AD}=\mathrm{CD}$, because these are equal <br> sides of the kite |

What does this
mean?


