a)

A cuboidal tank with base 50 cm by 20 cm is filled to a depth of 10 cm with water.
A solid sphere, radius r, is dropped into the tank.
The depth of the water rises by 2 cm .
What is the radius of the sphere, r, correct to two decimal places?

By how much does the water appear to increase in volume?
$50 \mathrm{~cm} \times 20 \mathrm{~cm} \times 2 \mathrm{~cm}=2000 \mathrm{~cm}^{3}$

What is the volume of the sphere?

$$
\begin{gathered}
\frac{4}{3} \pi r^{3}=2000 \\
\pi r^{3}=2000 \div \frac{4}{3}=1500 \\
r^{3}=\frac{1500}{\pi} \\
r=\sqrt[3]{\frac{1500}{\pi}} \\
r=7.8159264179677 \ldots \\
r=7.82 \mathrm{~cm}
\end{gathered}
$$

What is the radius of the sphere?
b)

A cuboidal tank with base 40 cm by 30 cm is filled to a depth of 12 cm with water.
A solid sphere, radius r, is dropped into the tank.
The depth of the water is now 16 cm .
What is the radius of the sphere, r, correct to two decimal places?

By how much does the water appear to increase in volume?
$40 \mathrm{~cm} \times 30 \mathrm{~cm} \times 4 \mathrm{~cm}=4800 \mathrm{~cm}^{3}$

What is the volume of the sphere?

$$
\frac{4}{3} \pi r^{3}=4800
$$

What is the radius of the sphere?

A cylindrical tank with base radius 15 cm is filled to a depth of 30 cm with water. A solid sphere, radius r, is dropped into the tank.		
		A cylindrical tank with base radius 12 cm is filled to a depth of 12 cm with water.
		A solid sphere, radius r, is dropped into the tank.
The depth of the water rises by 4 cm . What is the radius of the sphere, r, correct to two decimal places?		The depth of the water is now 15 cm . What is the radius of the sphere, r, correct to two decimal places?
By how much does the water appear to increase in volume?	$\pi \times(15 \mathrm{~cm})^{2} \times 4 \mathrm{~cm}=900 \pi \mathrm{~cm}^{3}$	
What is the volume of the sphere?		
What is the radius of the sphere?		

