An ornamental sphere is formed of an alloy of two metals, A and B. Metal A has density $14 \mathrm{~g} / \mathrm{cm}^{3}$ and metal B has density $20 \mathrm{~g} / \mathrm{cm}^{3}$.
The sphere is formed using 364 g of metal A and 270 g of metal B.
Show that the ornamental sphere has surface area $56.1 \mathrm{~cm}^{2}$ to three significant figures.

What volume of each metal was used?

What is the volume of the alloy?

What is the volume of the sphere?

What is the radius of the sphere?

What is the surface area of the sphere?

$$
26 \mathrm{~cm}^{3}+13.5 \mathrm{~cm}^{3}=39.5 \mathrm{~cm}^{3}
$$

$$
(39.5 \times 3) \div 4=29.265
$$

$$
29.265 \div \pi=9.42993038
$$

$$
\sqrt[3]{9.42993038}=2.11269187 \mathrm{~cm}
$$

Metal A: $\frac{364}{14}=26 \mathrm{~cm}^{3}$
Metal B: $\frac{270}{20}=13.5 \mathrm{~cm}^{3}$

$$
4 \pi r^{2}=4 \times \pi \times 2.11269187^{2}
$$

$56.08958003 \mathrm{~cm}^{2}$
$=56.1 \mathrm{~cm}^{2}$

b)

An ornamental sphere is formed of an alloy of two metals, A and B. Metal A has density $20 \mathrm{~g} / \mathrm{cm}^{3}$ and metal B has density $14 \mathrm{~g} / \mathrm{cm}^{3}$.
The sphere is formed using 364 g of metal A and 270 g of metal B.
Show that the ornamental sphere has surface area $54.2 \mathrm{~cm}^{2}$ to three significant figures.

What volume of each metal was used?

$$
\text { Metal B: } \frac{270}{14}=19.28571429 \mathrm{~cm}^{3}
$$

What is the volume of the alloy?

$$
\begin{gathered}
18.2 \mathrm{~cm}^{3}+19.28571429 \mathrm{~cm}^{3}= \\
37.48571429 \mathrm{~cm}^{3}
\end{gathered}
$$

What is the volume of the sphere?

$$
\frac{4}{3} \pi r^{3}=37.48571429 \mathrm{~cm}^{3}
$$

$$
\text { Metal A: } \frac{364}{20}=18.2 \mathrm{~cm}^{3}
$$

$$
(37.48571429 \times 3) \div 4=
$$ 28.11428572

What is the radius of the sphere?

$$
\begin{aligned}
& 28.11428572 \div \pi=8.94905509 \\
& \sqrt[3]{8.94905509}=2.07615159 \mathrm{~cm}
\end{aligned}
$$

What is the surface area of the sphere?
b)

An ornamental sphere is formed of an alloy of two metals, A and B. Metal A has density $20 \mathrm{~g} / \mathrm{cm}^{3}$ and metal B has density $14 \mathrm{~g} / \mathrm{cm}^{3}$. The sphere is formed using 560 g of metal A and 560 g of metal B.

Show that the ornamental sphere has surface area $80.5 \mathrm{~cm}^{2}$ to three significant figures.

What volume of each metal was used?

What is the volume of the alloy?

$$
28 \mathrm{~cm}^{3}+40 \mathrm{~cm}^{3}=68 \mathrm{~cm}^{3}
$$

d)

An ornamental sphere is formed of an alloy of two metals, A and B. Metal A has density $8 \mathrm{~g} / \mathrm{cm}^{3}$ and metal B has density $10 \mathrm{~g} / \mathrm{cm}^{3}$. The sphere is formed using 350 g of metal A and 480 g of metal B.

Show that the ornamental sphere has surface area $98.4 \mathrm{~cm}^{2}$ to three significant figures.

