a) x is directly proportional to y. y is directly proportional to z. When $x = 10$, $y = 60$. When $y = 8$, $z = 1.6$.		b) <i>a</i> is directly proportional to <i>b</i> . <i>b</i> is directly proportional to <i>c</i> . When $a = 5$, $b = 20$. When $b = 6$, $c = 2$.	
Find a formula for z in terms of x .		Find a formula for <i>c</i> in terms of <i>a</i> .	
Write the relationship between <i>x</i> and <i>y</i> as a formula using a multiplier, <i>k</i>	$y \propto x$ $y = kx$	Write the relationship between <i>a</i> and <i>b</i> as a formula using a multiplier, <i>k</i>	$b \propto a$ $b = ka$
Substitute values of <i>x</i> and <i>y</i>	$60 = k \times 10$ $k = \frac{60}{10} = 6$	Substitute values of <i>a</i> and <i>b</i>	$20 = k \times 5$ $k = \frac{20}{5} = 4$
Substitute the value of <i>k</i> in to the formula	y = 6x	Substitute the value of <i>k</i> in to the formula	b = 4a
Write the relationship between y and z as a formula using a multiplier, k	$z \propto y$ $z = ky$	Write the relationship between <i>b</i> and <i>c</i> as a formula using a multiplier, <i>k</i>	$c \propto b$ $c = kb$
Substitute values of y and z	$1.6 = k \times 8$ $k = \frac{1.6}{8} = 0.2 = \frac{1}{5}$	Substitute values of <i>y</i> and <i>z</i>	$2 = k \times 6$ $k = \frac{2}{6} = \frac{1}{3}$
Substitute the value of <i>k</i> in to the formula	$z = \frac{1}{5}y = \frac{y}{5}$	Substitute the value of <i>k</i> in to the formula	$c = \frac{1}{3}b = \frac{b}{3}$
Using the formula for <i>y</i> in terms of <i>x</i> , substitute <i>y</i> in to the formula for <i>z</i> in terms of <i>y</i>	$y = 6x$ $z = \frac{y}{5}$ $z = \frac{6x}{5}$	Using the formula for <i>b</i> in terms of <i>a</i> , substitute <i>b</i> in to the formula for <i>c</i> in terms of <i>b</i>	

BACKWARD FADED MATHS

c) <i>m</i> is directly proportional to <i>n</i> . <i>n</i> is directly proportional to <i>p</i> . When $m = 2$, $n = 80$. When $n = 10$, $p = 1.25$.		d) r is directly proportional to s. s is directly proportional to t. When $r = 4$, $s = 40$. When $s = 30$, $t = 7.5$.
Find a formula for <i>p</i> in terms of <i>m</i> .		Find a formula for <i>t</i> in terms of <i>r</i> .
Write the relationship between <i>m</i> and <i>n</i> as a formula using a multiplier, <i>k</i>	$n \propto m$ $n = km$	
Substitute values of <i>m</i> and <i>n</i>	$80 = k \times 2$ $k = \frac{80}{2} = 40$	
Substitute the value of <i>k</i> in to the formula	n = 40m	
Write the relationship between <i>n</i> and <i>p</i> as a formula using a multiplier, <i>k</i>		
Substitute values of n and p		
Substitute the value of <i>k</i> in to the formula		
Using the formula for <i>n</i> in terms of <i>m</i> , substitute <i>n</i> in to the formula for <i>p</i> in terms of <i>n</i>		

BACKWARD FADED MATHS