a)
x is directly proportional to y.
y is directly proportional to z.
When $x=10, y=60$.
When $y=8, z=1.6$.
Find a formula for z in terms of x.

Write the relationship between x and y as a formula using a
multiplier, k

$$
\begin{gathered}
y \propto x \\
y=k x
\end{gathered}
$$

Substitute values of x and y

Substitute the value of k in to the formula

Write the relationship between y and z as a formula using a multiplier, k

Substitute values of y and z

Substitute the value of k in to the formula

$$
\begin{gathered}
60=k \times 10 \\
k=\frac{60}{10}=6 \\
y=6 x \\
z \propto y \\
z=k y \\
1.6=k \times 8 \\
k=\frac{1.6}{8}=0.2=\frac{1}{5} \\
z=\frac{1}{5} y=\frac{y}{5} \\
y=6 x \\
z=\frac{y}{5} \\
z=\frac{6 x}{5}
\end{gathered}
$$

Using the formula for y in terms of x, substitute y in to the formula for z in terms of y
b)
a is directly proportional to b.
b is directly proportional to c.
When $a=5, b=20$.
When $b=6, c=2$.
Find a formula for c in terms of a.
Write the relationship between a $\begin{array}{cc}\text { rite the relationship between } a & b \propto a \\ \text { and } b \text { as a formula using a } & b=k a \\ \text { multiplier, } k & \end{array}$

Substitute values of a and b

Substitute the value of k in to the formula

$$
\begin{aligned}
& 20=k \times 5 \\
& k=\frac{20}{5}=4
\end{aligned}
$$

$$
b=4 a
$$

Write the relationship between b and c as a formula using a
multiplier, k

$$
c \propto b
$$

$$
c=k b
$$

Substitute values of y and z

$$
k=\frac{2}{6}=\frac{1}{3}
$$

Substitute the value of k in to the formula

$$
2=k \times 6
$$

$$
c=\frac{1}{3} b=\frac{b}{3}
$$

Using the formula for b in terms

 of a, substitute b in to the formula for c in terms of b| c) | |
| :---: | :---: |
| m is directly proportional to n. | |
| n is directly proportional to p. | |
| When $m=2, n=80$. | |
| When $n=10, p=1.25$. | |
| Find a formula for p in terms of m. | |
| Write the relationship between m and n as a formula using a multiplier, k | $\begin{gathered} n \propto m \\ n=k m \end{gathered}$ |
| Substitute values of m and n | $\begin{gathered} 80=k \times 2 \\ k=\frac{80}{2}=40 \end{gathered}$ |
| Substitute the value of k in to the formula | $n=40 m$ |
| Write the relationship between n and p as a formula using a multiplier, k | |
| Substitute values of n and p | |
| Substitute the value of k in to the formula | |
| Using the formula for n in terms of m, substitute n in to the formula for p in terms of n | |

d)
r is directly proportional to s.
s is directly proportional to t.
When $r=4, s=40$.
When $s=30, t=7.5$.
Find a formula for t in terms of r.

