a)

An ornament is made from a solid glass square-based pyramid.
The base has side length 15 cm .
A hemisphere with radius 6 cm is cut out of the base of the pyramid.
This reduces the volume of glass contained in the ornament by 30%.
Calculate the perpendicular height of the pyramid.

What is the volume of the 'full' pyramid?

$$
\begin{aligned}
V_{\text {pyramid }}= & \frac{1}{3} \times \text { area of base } \times \text { perp. height } \\
& =\frac{1}{3} \times 15^{2} \times x=75 x
\end{aligned}
$$

$$
V_{\text {sphere }}=\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \pi \times 6^{3}=288 \pi
$$

$$
V_{\text {hemisphere }}=\frac{288 \pi}{2}=144 \pi
$$

$$
V_{\text {hemisphere }}=30 \% \text { of } V_{\text {pyramid }}
$$

relationship
between the two

$$
144 \pi=\frac{3}{10} \times 75 x
$$ volumes?

$$
144 \pi=\frac{225 x}{10}
$$

What is the perpendicular height, x ?

$$
x=\frac{144 \pi \times 10}{225}=20.10619298297 \ldots
$$

$$
20.11 \mathrm{~cm}
$$

b)

An ornament is made from a solid glass square-based pyramid.
The base has side length 20 cm .
A hemisphere with diameter 16 cm is cut out of the base of the pyramid.
This reduces the volume of glass contained in ornament by 25%.
Calculate the perpendicular height of the
 pyramid.
$V_{\text {pyramid }}=\frac{1}{3} \times$ area of base \times perp. height

$$
=\frac{1}{3} \times 20^{2} \times x=\frac{400}{3} x
$$

What is the volume of the hemisphere?

$$
\begin{gathered}
V_{\text {sphere }}=\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \pi \times 8^{3}=\frac{2048 \pi}{3} \\
V_{\text {hemisphere }}=\frac{2048 \pi}{3} \div 2=\frac{1024 \pi}{3}
\end{gathered}
$$

What is the relationship between the two volumes?

$$
\begin{gathered}
V_{\text {hemisphere }}=25 \% \text { of } V_{\text {pyramid }} \\
\frac{1024 \pi}{3}=\frac{1}{4} \times \frac{400}{3} x \\
\frac{1024 \pi}{3}=\frac{100 x}{3}
\end{gathered}
$$

What is the perpendicular height, x ?
c)

An ornament is made from a solid glass square-based pyramid.
The base has side length 12 cm .
A hemisphere with diameter 8 cm is cut out of the base of the pyramid.
This reduces the volume of glass contained in ornament by 40%.
Calculate the perpendicular height of the pyramid.

What is the volume of the 'full' pyramid?

$$
\begin{aligned}
V_{\text {pyramid }}= & \frac{1}{3} \times \text { area of base } \times \text { perp. height } \\
& =\frac{1}{3} \times 12^{2} \times x=48 x
\end{aligned}
$$

What is the volume

$$
V_{\text {sphere }}=\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \pi \times 4^{3}=\frac{256 \pi}{3}
$$ of the hemisphere?

$$
V_{\text {hemisphere }}=\frac{256 \pi}{3} \div 2=\frac{128 \pi}{3}
$$

What is the relationship between the two volumes?

What is the perpendicular
height, x ?
d)

An ornament is made from a solid glass square-based pyramid.
The base has side length 12 cm .
A hemisphere with radius 4.5 cm is cut out of the base of the pyramid.
This reduces the volume of glass contained in the ornament by 20%.
Calculate the perpendicular height of the pyramid.

