 a) An ornament is made from a solid glass square-based pyramid. The base has side length 15cm. A hemisphere with radius 6cm is cut out of the base of the pyramid. This reduces the volume of glass contained in the ornament by 30%. Calculate the perpendicular height of the pyramid. 		 b) An ornament is made from a solid glass square-based pyramid. The base has side length 20cm. A hemisphere with diameter 16cm is cut out of the base of the pyramid. This reduces the volume of glass contained in ornament by 25%. Calculate the perpendicular height of the pyramid. 	
What is the volume of the 'full' pyramid?	$V_{pyramid} = \frac{1}{3} \times area \ of \ base \ \times \ perp. \ height$ $= \frac{1}{3} \times 15^2 \ \times x = 75x$	What is the volume of the 'full' pyramid?	$V_{pyramid} = \frac{1}{3} \times area \ of \ base \ \times \ perp. \ height$ $= \frac{1}{3} \times 20^2 \ \times x = \frac{400}{3}x$
What is the volume of the hemisphere?	$V_{sphere} = \frac{4}{3}\pi r^3 = \frac{4}{3} \times \pi \times 6^3 = 288\pi$ $V_{hemisphere} = \frac{288\pi}{2} = 144\pi$	What is the volume of the hemisphere?	$V_{sphere} = \frac{4}{3}\pi r^3 = \frac{4}{3} \times \pi \times 8^3 = \frac{2048\pi}{3}$ $V_{hemisphere} = \frac{2048\pi}{3} \div 2 = \frac{1024\pi}{3}$
What is the relationship between the two volumes?	$V_{hemisphere} = 30\% of V_{pyramid}$ $144\pi = \frac{3}{10} \times 75x$ $144\pi = \frac{225x}{10}$	What is the relationship between the two volumes?	$V_{hemisphere} = 25\% \text{ of } V_{pyramid}$ $\frac{1024\pi}{3} = \frac{1}{4} \times \frac{400}{3}x$ $\frac{1024\pi}{3} = \frac{100x}{3}$
What is the perpendicular height, <i>x</i> ?	$x = \frac{144\pi \times 10}{225} = 20.10619298297 \dots$ 20.11cm	What is the perpendicular height, <i>x</i> ?	

BACKWARD FADED MATHS

BACKWARD FADED MATHS