a) An ornamental sphere is formed of an alloy of two metals, A and B. Metal A has density $12 \mathrm{~g} / \mathrm{cm}^{3}$ and metal B has density $25 \mathrm{~g} / \mathrm{cm}^{3}$.
The sphere is formed using 180 g of metal A and 450 g of metal B.
Calculate the surface area of the ornamental sphere, giving your solution to three significant figures.
b) An ornamental sphere is formed of an alloy of two metals, A and B. Metal A has density $18 \mathrm{~g} / \mathrm{cm}^{3}$ and metal B has density $10 \mathrm{~g} / \mathrm{cm}^{3}$.
The sphere is formed using 450 g of metal A and 390 g of metal B.
Calculate the density of the ornamental sphere, giving your solution to three significant figures.
c) An ornamental sphere is formed of an alloy of two metals, A and B. Metal A has density $20 \mathrm{~g} / \mathrm{cm}^{3}$ and metal B has density $x \mathrm{~g} / \mathrm{cm}^{3}$.
The sphere is formed using 200 g of metal A and 450 g of metal B.
Given that the sphere has radius 1.81 cm to 2 decimal places, find the value of x.
a) An ornamental sphere is formed of an alloy of two metals, A and B.

Metal A has density $12 \mathrm{~g} / \mathrm{cm}^{3}$ and metal B has density $25 \mathrm{~g} / \mathrm{cm}^{3}$.
The sphere is formed using 180 g of metal A and 450 g of metal B.
Calculate the surface area of the ornamental sphere, giving your solution to three significant figures.
b) An ornamental sphere is formed of an alloy of two metals, A and B. Metal A has density $18 \mathrm{~g} / \mathrm{cm}^{3}$ and metal B has density $10 \mathrm{~g} / \mathrm{cm}^{3}$.
The sphere is formed using 450 g of metal A and 390 g of metal B.
Calculate the density of the ornamental sphere, giving your solution to three significant figures.
c) An ornamental sphere is formed of an alloy of two metals, A and B. Metal A has density $20 \mathrm{~g} / \mathrm{cm}^{3}$ and metal B has density $x \mathrm{~g} / \mathrm{cm}^{3}$. The sphere is formed using 200 g of metal A and 450 g of metal B.

Given that the sphere has radius 1.81 cm to 2 decimal places, find the value of x.

