a) A solid metal sphere has surface area $452.39 \mathrm{~cm}^{2}$ to two decimal places, and mass 3 kg . Show that the density of this sphere is $3.3 \mathrm{~g} / \mathrm{cm}^{2}$, correct to one decimal place.	a) A solid metal sphere has surface area $452.39 \mathrm{~cm}^{2}$ to two decimal places, and mass 3 kg . Show that the density of this sphere is $3.3 \mathrm{~g} / \mathrm{cm}^{2}$, correct to one decimal place.
b) A solid plastic cube has density $1.5 \mathrm{~g} / \mathrm{cm}^{3}$ and a surface area of $54 \mathrm{~cm}^{2}$. Show that the mass of the cube is 40.5 g .	b) A solid plastic cube has density $1.5 \mathrm{~g} / \mathrm{cm}^{3}$ and a surface area of $54 \mathrm{~cm}^{2}$. Show that the mass of the cube is 40.5 g .
c) A car sets off on a journey of 180 miles at 9 am . It travels at an average speed of 66 mph for the first 90 minutes. Show that if they want to arrive by 12 noon, they must travel at a minimum speed of 54 mph .	c) A car sets off on a journey of 180 miles at 9 am . It travels at an average speed of 66 mph for the first 90 minutes. Show that if they want to arrive by 12 noon, they must travel at a minimum speed of 54 mph .
BACKWARD FADED MATHS	BACKWARD FADED MATHS

