a)

Ash ate $\frac{2}{5}$ of a bag of chocolates.
Bailey ate $\frac{3}{8}$ of the chocolates that were left in the bag.
What fraction of the chocolates were then left in the bag?

What fraction of the chocolates did Ash leave?	$1-\frac{2}{5}=\frac{3}{5}$
What fraction of the chocolates did Bailey eat?	$\frac{3}{8} \times \frac{3}{5}=\frac{9}{40}$
What fraction of the chocolates were eaten altogether?	$\frac{2}{5}+\frac{9}{40}=\frac{16}{40}+\frac{9}{40}=\frac{25}{40}=\frac{5}{8}$
What fraction of the bag of chocolates were left?	$1-\frac{5}{8}=\frac{3}{8}$

c)

Eli ate $\frac{3}{10}$ of a bag of chocolates.
Gray ate $\frac{3}{7}$ of the chocolates that were left in the bag.
What fraction of the chocolates were then left in the bag?

$$
\begin{aligned}
& \text { What fraction of the } \\
& \text { chocolates did Eli leave? }
\end{aligned} \quad 1-\frac{3}{10}=\frac{7}{10}
$$

What fraction of the chocolates did Gray eat?
What fraction of the chocolates were eaten altogether?

What fraction of the bag of chocolates were left?
b)

Cris ate $\frac{1}{3}$ of a bag of chocolates.
Drew ate $\frac{2}{5}$ of the chocolates that were left in the bag.
What fraction of the chocolates were then left in the bag?

What fraction of the chocolates did Cris leave?	$1-\frac{1}{3}=\frac{2}{3}$
What fraction of the chocolates did Drew eat?	$\frac{2}{5} \times \frac{2}{3}=\frac{4}{15}$

What fraction of the chocolates were eaten altogether?
What fraction of the bag of chocolates were left?
d)

Harper ate $\frac{4}{9}$ of a bag of chocolates.
Kennedy ate $\frac{2}{5}$ of the chocolates that were left in the bag. What fraction of the chocolates were then left in the bag?

