a) The probability that a blue counter is removed from a bag is 0.15 . There are 18 blue counters in the bag. Work out the total number of counters in the bag.		b) The probability that a blue counter is removed from a bag is 0.2 . There are 18 blue counters in the bag. Work out the total number of counters in the bag.	
How can we write the probability as a fraction?	$0.15=\frac{15}{100}=\frac{3}{20}$	How can we write the probability as a fraction?	$0.2=\frac{2}{10}=\frac{1}{5}$
Can we write two equivalent fractions?	$\frac{3}{20}=\frac{18}{x 6}$	Can we write two equivalent fractions?	$\frac{1}{5}=\frac{18}{}$
How many counters are in the bag?	There are 120 counters in the bag.	How many counters are in the bag?	
c) The probability that a blue counter is removed from a bag is 0.35 . There are 28 blue counters in the bag. Work out the total number of counters in the bag.		d) The probability that a blue counter is removed from a bag is 0.6 . There are 18 blue counters in the bag. Work out the total number of counters in the bag.	
How can we write the probability as a fraction?	$0.35=\frac{35}{100}=\frac{7}{20}$		
Can we write two equivalent fractions?			
How many counters are in the bag?			

