a)

A cuboidal container, as shown in the first diagram, is filled with water to a depth of 16 cm , and sealed.

The container is then rotated as shown in the second diagram.

What is the depth of the water in the container in the second diagram?

What is the volume of water in the sealed container?

Allow the depth of the water in the second diagram to be x.
How can we express the volume of the water?

Has the volume of water changed?

$$
200 x \mathrm{~cm}^{3}=1920 \mathrm{~cm}^{3}
$$

What is the depth of the water, x ?

$$
x=\frac{1920}{200}=9.6 \mathrm{~cm}
$$

b)

A cuboidal container, as shown in the first diagram, is filled with water to a depth of 12 cm , and sealed.

The container is then rotated as shown in the second diagram.

What is the depth of the water in the container in the second diagram?

What is the volume of water in the sealed container?

Allow the depth of the water in the second diagram to be x.
How can we express the volume of the
water?
Has the volume of water changed?

What is the depth of the water, x ?

BACKWARD FADED MATHS

