a) P is directly proportional to Q^{2} and $P=10$ when $Q=2$
i) Find the equation linking P and Q
ii) Find the value of P when $\mathrm{Q}=11$
i) $\mathrm{P}=\mathrm{kQ} \mathrm{Q}^{2}$
$10=k \times 2^{2}=4 \mathrm{k}$
$\mathrm{k}=2.5$
$\mathrm{P}=2.5 \mathrm{Q}^{2}$
ii) $\mathrm{P}=5 \times 11^{2}$
$\mathrm{P}=605$
b) P is directly proportional to Q^{3} and $\mathrm{P}=128$ when $\mathrm{Q}=4$
i) Find the equation linking P and Q
ii) Find the value of P when $Q=5$
i) $\mathrm{P}=\mathrm{k} Q^{3}$

$$
\begin{aligned}
& 128=k \times 4^{3}=64 \mathrm{k} \\
& \mathrm{k}=2 \\
& \mathrm{P}=2 \mathrm{Q}^{3}
\end{aligned}
$$

ii) $\mathrm{P}=2 \times 5^{3}$
$\mathrm{P}=$ \qquad
c) P is directly proportional to \sqrt{Q} and $\mathrm{P}=36$ when $\mathrm{Q}=9$
i) Find the equation linking P and Q
ii) Find the value of P when $\mathrm{Q}=49$
i) $\mathrm{P}=\mathrm{k} \sqrt{Q}$

$$
\begin{aligned}
36 & =\mathrm{k} \times \sqrt{9}=3 \mathrm{k} \\
\mathrm{k} & =12 \\
\mathrm{P} & =\ldots \ldots \mathrm{Q}
\end{aligned}
$$

ii) $\quad \mathrm{P}=$ \qquad \times \qquad
$\mathrm{P}=$ \qquad
f) P is directly proportional to $\sqrt[3]{Q}$ and $\mathrm{P}=70$ when $\mathrm{Q}=1000$
i) Find the equation linking P and Q
ii) Find the value of P when $\mathrm{Q}=27$

$$
\text { i) } \begin{aligned}
\mathrm{P} & =\mathrm{kQ}^{2} \\
48 & =\mathrm{k} \times 4^{2}=16 \mathrm{k} \\
\mathrm{k} & =\ldots \ldots \ldots . . \\
\mathrm{P} & =\ldots \ldots . \mathrm{Q}^{2}
\end{aligned}
$$

ii) $\quad \mathrm{P}=$ \qquad \times

$$
\mathrm{P}=
$$

\qquad
e) P is directly proportional to Q^{3} and $\mathrm{P}=32$ when $\mathrm{Q}=64$
i) Find the equation linking P and Q
ii) Find the value of P when $\mathrm{Q}=10$
i) $\mathrm{P}=\mathrm{k} Q^{3}$
$\ldots=\mathrm{k} \times$ $=$ \qquad .k

$$
\mathrm{k}=
$$

\qquad
$P=$ \qquad
ii) $\quad \mathrm{P}=$ \qquad \times $P=$ \qquad

