a) P is inversely proportional to Q and $P=14$ when $Q=2$
i) Find the equation linking P and Q
ii) Find the value of P when $Q=7$
i) $\quad \mathrm{P}=\frac{k}{Q}$

$$
14=\frac{k}{2}
$$

$k=14 \times 2=28$

$$
\mathrm{P}=\frac{28}{Q}
$$

ii) $\quad \mathrm{P}=\frac{28}{7}$

$$
\mathrm{P}=4
$$

d) P is inversely proportional to Q and $\mathrm{P}=12$ when $\mathrm{Q}=5$
i) Find the equation linking P and Q
ii) Find the value of P when $Q=15$
i) $\mathrm{P}=\frac{k}{Q}$
$12=\frac{k}{5}$
$k=12 \times 5=$
........ $\mathrm{P}=\frac{\cdots \cdots \cdots \cdot}{Q}$
ii) $\quad \mathrm{P}=\frac{\ldots \ldots \ldots}{\ldots \ldots . .}$

$$
\mathrm{P}=
$$

\qquad
b) P is inversely proportional to Q and
$\mathrm{P}=12$ when $\mathrm{Q}=3$
i) Find the equation linking P and Q
ii) Find the value of P when $Q=9$
i) $\mathrm{P}=\frac{k}{Q}$

$$
12=\frac{k}{3}
$$

$k=12 \times 3=36$

$$
\mathrm{P}=\frac{36}{Q}
$$

ii) $\quad \mathrm{P}=\frac{36}{9}$
$\mathrm{P}=$
e) P is inversely proportional to Q and $P=10$ when $Q=2$
i) Find the equation linking P and Q
ii) Find the value of P when $Q=8$
i) $\mathrm{P}=\frac{k}{Q}$

$$
\begin{aligned}
& \ldots \ldots \ldots=\frac{k}{\ldots \ldots \ldots .} \\
& k=\ldots \ldots . . \times \ldots \ldots \ldots \ldots \ldots . \\
& P=\frac{\ldots \ldots \ldots}{Q}
\end{aligned}
$$

ii) $\quad \mathrm{P}=$ \qquad
$P=$ \qquad
c) P is inversely proportional to Q and $\mathrm{P}=8$ when $\mathrm{Q}=6$
i) Find the equation linking P and Q
ii) Find the value of P when $Q=3$
i) $\mathrm{P}=\frac{k}{Q}$

$$
8=\frac{k}{6}
$$

$k=8 \times 6=48$

$$
\mathrm{P}=\frac{48}{Q}
$$

ii) $\quad \mathrm{P}=\frac{48}{\ldots \ldots \ldots}$

$$
P=
$$

\qquad
f) P is inversely proportional to Q and $P=20$ when $Q=2$
i) Find the equation linking P and Q
ii) Find the value of P when $Q=8$

BACKWARD FADED MATHS

