a) P is inversely proportional to Q^{2} and $P=18$ when $Q=2$
i) Find the equation linking P and Q
ii) Find the value of P when $Q=4$
i) $\mathrm{P}=\frac{k}{Q^{2}}$
$14=\frac{k}{2^{2}}$
$k=18 \times 4=72$

$$
\mathrm{P}=\frac{72}{Q^{2}}
$$

ii) $\quad \mathrm{P}=\frac{72}{4^{2}}$

$$
\mathrm{P}=4.5
$$

d) P is inversely proportional to \sqrt{Q} and $P=12$ when $Q=64$
i) Find the equation linking P and Q
ii) Find the value of P when $Q=25$
i) $\mathrm{P}=\frac{k}{\sqrt{Q}}$
$12=\frac{k}{\sqrt{64}}$
$k=12 \times 8=$ \qquad $\mathrm{P}=\frac{}{\sqrt{Q}}$
ii) $\quad \mathrm{P}=\square$
$P=$ \qquad
b) P is inversely proportional to Q^{2} and $P=12$ when $Q=3$
i) Find the equation linking P and Q
ii) Find the value of P when $Q=6$
i) $\mathrm{P}=\frac{k}{Q^{2}}$

$$
12=\frac{k}{3^{2}}
$$

$k=12 \times 9=108$

$$
\mathrm{P}=\frac{108}{Q^{2}}
$$

ii) $\quad \begin{array}{r}\mathrm{P}=\frac{108}{6^{2}} \\ \mathrm{P}=\end{array}$
e) P is inversely proportional to $\sqrt[3]{Q}$ and $P=10$ when $Q=27$
i) Find the equation linking P and Q
ii) Find the value of P when $Q=8$
i) $\mathrm{P}=\frac{k}{\sqrt[3]{Q}}$

$$
\ldots \ldots . .=\underline{k}
$$

$k=$ \qquad \times \qquad $=$ \qquad

$$
\mathrm{P}=\frac{}{Q}
$$

ii) $\quad \mathrm{P}=-$
$\mathrm{P}=$ \qquad
c) P is inversely proportional to Q^{3} and $P=8$ when $Q=6$
i) Find the equation linking P and Q
ii) Find the value of P when $Q=3$
i) $\mathrm{P}=\frac{k}{Q^{3}}$

$$
8=\frac{k}{6^{3}}
$$

$k=8 \times 216=1728$

$$
\mathrm{P}=\frac{1728}{Q^{3}}
$$

ii) $\quad \mathrm{P}=\frac{1728}{\ldots \ldots . .}$

$$
P=
$$

\qquad
f) P is inversely proportional to Q^{3} and $P=20$ when $Q=2$
i) Find the equation linking P and Q
ii) Find the value of P when $\mathrm{Q}=4$

