 a) P is inversely proportional to Q² and P = 18 when Q = 2 i) Find the equation linking P and Q ii) Find the value of P when Q = 4 	 b) P is inversely proportional to Q² and P = 12 when Q = 3 i) Find the equation linking P and Q ii) Find the value of P when Q = 6 	 c) P is inversely proportional to Q³ and P = 8 when Q = 6 i) Find the equation linking P and Q ii) Find the value of P when Q = 3
i) $P = \frac{k}{Q^2}$	i) $P = \frac{k}{Q^2}$	i) $P = \frac{k}{Q^3}$
$14 = \frac{k}{2^2}$ $k = 18 \times 4 = 72$ $P = \frac{72}{0^2}$	$12 = \frac{k}{3^2}$ $k = 12 \times 9 = 108$ $P = \frac{108}{0^2}$	$8 = \frac{k}{6^3}$ $k = 8 \times 216 = 1728$ $P = \frac{1728}{0^3}$
ii) $P = \frac{72}{4^2}$ P = 4.5	ii) $P = \frac{108}{6^2}$ $P = \dots$	ii) $P = \frac{1728}{}$ P =
d) P is inversely proportional to \sqrt{Q} and P = 12 when Q = 64 i) Find the equation linking P and Q ii) Find the value of P when Q = 25	e) P is inversely proportional to $\sqrt[3]{Q}$ and P = 10 when Q = 27 i) Find the equation linking P and Q ii) Find the value of P when Q = 8	f) P is inversely proportional to Q^3 and P = 20 when Q = 2 i) Find the equation linking P and Q ii) Find the value of P when Q = 4
i) $P = \frac{k}{\sqrt{Q}}$ $12 = \frac{k}{\sqrt{64}}$	i) $P = \frac{k}{\sqrt[3]{Q}}$ = $\frac{k}{k}$	
$k = 12 \times 8 = \dots$ $P = \frac{\sqrt{64}}{\sqrt{Q}}$	$k = \dots \times \dots = \dots$ $P = $	
ii) P = P =	ii) P = P =	

BACKWARD FADED MATHS