Question						
Pythagoras' theorem	$10^{2}=6^{2}+x^{2}$	$13^{2}=8^{2}+x^{2}$	$8^{2}=5^{2}+x^{2}$	$13^{2}=9^{2}+x^{2}$		
Calculate	$100=36+x^{2}$	$169=64+x^{2}$	$64=25+x^{2}$	$=x^{2}$		
Re-arrange	$x^{2}=100-36$	$x^{2}=169-64$	$x^{2}=64-25$	$x^{2}=$		
Sum	$x^{2}=64$	$x^{2}=105$	$x^{2}=$	$x^{2}=$		
Square root	$x=\sqrt{64}$	$x=$	$x=$	$x=$		
Solve	$x=$	$x=$	$x=$	$x=$		

\qquad

Using Pythagoras' theorem to find a shorter side

Shared on mathslinks.net

Question						
Pythagoras' theorem	$10^{2}=6^{2}+x^{2}$	$13^{2}=8^{2}+x^{2}$	$8^{2}=5^{2}+x^{2}$	$13^{2}=9^{2}+x^{2}$		
Calculate	$100=36+x^{2}$	$169=64+x^{2}$	$64=25+x^{2}$	$=x^{2}$		
Re-arrange	$x^{2}=100-36$	$x^{2}=169-64$	$x^{2}=64-25$	$x^{2}=$		
Sum	$x^{2}=64$	$x^{2}=105$	$x^{2}=$	$x^{2}=$		
Square root	$x=\sqrt{64}$	$x=$	$x=$	$x=$		
Solve	$x=$	$x=$	$x=$	$x=$		

