GCSE Mathematics - Higher

One question per topic across the specification Algebra

Name:

Class:

Teacher:

ALGEBRA

Collecting Like Terms

The perimeter of the triangle is the same length as the perimeter of the square.

Find an expression for the length of one side of the square in terms of a.
Give your answer in its simplest form.

Substitution

Complete the table for $y=x^{3}-6 x-5$.

x	0	1	2	3	4
y		-10	-9	4	

Laws of Indices
a) Simplify

$$
\left(\frac{x^{4} y}{x^{2} y^{2}}\right)^{3}
$$

b) Show that $\sqrt[3]{a^{4}} \times \frac{1}{a}$ can be expressed as $a^{\frac{1}{3}}$
c) Simplify fully:

$$
\frac{3 a^{8} \times 2 a^{5}}{a^{2}}
$$

Expanding and Simplifying
Expand and simplify:
a) $2(3 x+5)+3(x+1)$
b) $3 x(3 x-5)-2 x(x-8)$

Factorising Expressions

Factorise fully:
a) $6 x-x^{2}$
b) $10 x y-25 x$
c) $18 a b c+24 b c-12 b$

Expanding Double Brackets
Expand and simplify:
a) $(x+7)(x+2)$
b) $(2 x+1)(x-5)$
c) $(3 x-y)(2 x+5 y)$

Factorising Quadratics
Factorise fully:
a) $x^{2}+5 x-24$
b) $5 x^{2}+7 x+2$
c) $x^{2}-49$

Products of Three Binomials
Expand and simplify.

$$
(2 x-1)(x+5)(3 x-2)
$$

Rearranging Formulae

a) Make \times the subject of the formula $y=\sqrt{4 x-3}$
b) Make a the subject of the formula $s=u t+\frac{1}{2} a t^{2}$
c) Show that $k=\frac{4+3 j}{5-j}$ can be rearranged to give $j=\frac{5 k-4}{3+k}$

Solve:
a) $3 x-4=\frac{x}{2}$
b) This is a square:

Work out the length of the side of the square.

Linear Sequences
Here are the first four terms of a sequence.
$\begin{array}{llll}-1 & 4 & 9 & 14\end{array}$

Write an expression for the nth term of this sequence.

Quadratic Sequences
a) This expression can be used to generate a sequence of numbers.

$$
n^{2}-n+11
$$

Work out the first three terms of this sequence.

Show that this expression does not only generate prime numbers.
b) Here are the first four terms of a quadratic sequence, the nth term of this quadratic sequence is $a n^{2}+b n+c$.

$$
\begin{array}{llll}
2 & 12 & 28 & 50
\end{array}
$$

Find the values of a, b and c.

```
\(a=\)
``` \(\qquad\)
```

$b=$

``` \(\qquad\)
```

$c=$

``` \(\qquad\)

Other Sequences
a) Here is a sequence: \(\quad 2,2 \sqrt{7}, 14,14 \sqrt{7}\)

Work out the next term.
a) Here is a sequence: \(\quad 5,5 \sqrt{3}, 15,15 \sqrt{3}\)

Write the \(n\)th term.

Linear Graphs
\(P\) has coordinates \((0,-1)\) and \(Q\) has coordinates \((4,1)\).
Find the equation of the line \(P Q\).

\section*{Non-Linear Graphs}
a) This is a sketch of the graph of \(y=(x-1)(x-3)\).

Find the coordinates of the points \(A, B, P\) and \(Q\).
\(A=\)
\(B=\) \(\qquad\)
\(P=\) \(\qquad\)
\(Q=\) \(\qquad\)

Reciprocal and Exponential Graphs
a) Rashid invests money into an account which pays a fixed rate of compound interest each year.
The value, \(£ V\), of his investment after \(\dagger\) years is given by the formula
\[
V=1250 \times 1.03^{\dagger}
\]

Circle the graph that best represents the growth in Rashid's account.

b) For each graph, choose its possible equation from this list:
\(y=\frac{1}{x}\)
\(y=\cos x\)
\(y=x^{2}\)
\(y=2^{x}\)
\(y=\sin x\)
\(y=x^{3}\)
\(y=\frac{1}{x^{2}}\)
i)

ii)

iii)

Parallel and Perpendicular Lines
a) The graph shows two parallel lines, Line \(A\) and Line \(B\).

Line \(A\) has equation \(y=6 x+7\).
Line \(B\) passes through the point \((4,26)\).
Find the equation of Line \(B\).
b) \(P\) is the point \((0,-1)\) and \(Q\) is the point \((5,9)\).

Find the equation of the line through \(P\) that is perpendicular to the line \(P Q\).

Equations and Tangents of Circles
a) The diagram shows a circle, centre \(O\).

The circumference of the circle is \(20 \pi \mathrm{~cm}\). Find the equation of the circle.
b) The point \((-5,2)\) lies on the circumference of a circle, centre \((0,0)\). Work out the equation of the tangent to circle at \((-5,2)\).

Forming and Solving Equations
a) Alexander, Reiner and Wim each watch a different film.

Alexander's film is thirty minutes longer than Wim's film.
Reiner's film is twice as long as Wim's film.
Altogether the films last 390 minutes.

How long is each of their films?

A: \(\qquad\)

R: \(\qquad\)

W: \(\qquad\)
b) Calculate the size of each angle in this triangle:

Not to scale
\(\qquad\)
c) Triangle \(A B C\) has sides \(x, x+23\), and \(2 x-1\).

Show that there is only one value of \(x\) which makes triangle \(A B C\) isosceles.
a) Solve \(3 x^{2}=75\)
b) Solve by factorisation \(\quad 3 x^{2}+11 x-20=0\)
c) \(x^{2}-6 x+15=3 x-5\)
d) The rectangle has a length \((2 x+5) \mathrm{cm}\) and width \((x-2) \mathrm{cm}\).

The rectangle has an area of \(35 \mathrm{~cm}^{2}\).
Use algebra to find the value of \(x\).

The Quadratic Formula
a) Solve this equation.

Give each value correct to 2 decimal places.
\[
3 x^{2}+2 x-3=0
\]
b) Ryan is using the quadratic formula to solve an equation of the form \(a x^{2}+b x+c=0\). After substituting values into the quadratic formula, he gets
\[
x=\frac{-3 \pm 3 \sqrt{5}}{2} .
\]

Find \(a\) possible set of values for \(a, b\) and \(c\).
\(\qquad\)
\(\qquad\)

Completing the Square
a) Write \(x^{2}+4 x-16\) in the form \((x+a)^{2}-b\)

Hence, or otherwise, find the turning point of the graph of \(y=x^{2}+4 x-1\)
b) Solve the equation \(x^{2}+4 x-16=0\).

Give your answers in surd form as simply as possible.

\section*{Solving Linear Inequalities}

Solve:
a) \(3 x-2>10\)
b) \(3 x-5 \geq 10\)

Show your solution on the number line:

Solving Quadratic Inequalities
Solve:
a) \(x^{2}-5 x-6 \leq 0\)
b) \(x^{2}-x-12 \geq 0\)
c) \(3 x^{2}-8 x+5<0\)

Linear Simultaneous Equations
a) Solve
\(4 x+3 y=5\)
\(2 x-3 y=1\)
b) Eddie and Caroline are going to the school play.

Eddie buys 6 adult tickets and 2 child tickets. He pays \(£ 39\).
Caroline buys 5 adult tickets and 3 child tickets. She pays \(£ 36.50\).
Work out the cost of an adult ticket and the cost of a child ticket.

Adult: £

Child: \(£\)

Quadratic Simultaneous Equations
Solve:
\[
\begin{aligned}
& y=x-3 \\
& y=2 x^{2}+8 x-7
\end{aligned}
\]

\section*{Iteration}
a) A sequence is defined by the term-to-term rule \(u_{n+1}=u_{n}{ }^{2}-8 u_{n}+17\). Given that \(u_{1}=4\), find \(u_{2}\) and \(u_{3}\).
\[
\mathrm{U}_{2}=
\]
\(\qquad\)
\(\mathrm{U}_{3}=\) \(\qquad\)
b) Show that one solution of the equation \(x^{3}+2 x-5=0\) lies between 1 and 2 .

Functions and Inverse Functions
Two functions, \(f\) and \(g\), are represented by these function machines:

A number is chosen.
This number is put into both function \(f\) and function \(g\).
The output from both functions is the same.
Work out the number that was chosen.

\section*{Composite Functions}

Here is a function:
Function A:

Here is another function
Function B:

Here is a composite function:

Find an expression for \(m\) in terms of \(p\).
Give your answer in its simplest form.

Simplifying Algebraic Fractions
Show that \(\frac{2 x^{2}+13 x+20}{2 x^{2}+x-10}\) simplifies to \(\frac{x+a}{x+b}\) where a and b are integers.

\section*{Calculating with Algebraic Fractions}
a) Show that \(\frac{x+9}{x^{2}-1}+\frac{4}{x+1}\) can be written in the form \(\frac{a}{x-1}\) where a is an integer.
b) Solve this equation, giving your answers correct to 1 decimal place.
\[
\frac{5}{x+2}+\frac{3}{x-3}=2
\]

Transformations of Graphs
a) This is a sketch of the graph of \(y=x^{2}\).

Sketch the graph of \(y=(x-2)^{2}\) on the same axes.
b) Sketch the graph of \(y=-\sin x\) for \(0^{\circ} \leq x \leq 360^{\circ}\).

Algebraic Proof
a) Prove that the difference between the squares of two consecutive odd numbers is a multiple of 8 .
b) Prove that \((2 x+1)(3 x+2)+x(3 x+5)+2\) is a perfect square.```

